C ombodo

Object Query Language Reference
Version: Itop 1.0

Overview

OQL aims at defining a subset of the data in a natural language, while hiding the
complexity of the data model and benefit of the power of the object model
(encapsulation, inheritance).

Its syntax sticks to the syntax of SQL, and its grammar is a subset of SQL.

As of now, only SELECT statements have been implemented.
Such a statement do return objects of the expected class. The result will be used by
programmatic means (to develop an API like ITOp).

A famous example: the library

Starter

SELECT
Book

Do return any book existing in the Database. No need to specify the expected columns as
we would do in a SQL SELECT clause: OQL do return plain objects.

Join classes together

I would like to list all books written by someone whose name starts with ‘Camus’

SELECT
Book
JOIN Artist ON Book.written_ by = Artist.id
WHERE Artist.name LIKE ’'Camus$%’

Note that there is no need to specify wether the JOIN is an INNER JOIN, or LEFT JOIN.

This is well-known in the data model. The OQL engine will in turn create a SQL queries
based on the relevant option, but we do not want to care about it, do we?

© Combodo 2010 1

C ombodo

Now, you may consider that the name of the author of a book is of importance. This is the
case if should be displayed anytime you will list a set of books, or if it is an important key
to search for.

Then you have the option to change the data model, and define the name of the author as
an external field. Such an external field would be defined by the external key written_by
and the target attribute name. Let’s qualify it has writer_name.

The query could then be simplified to:

SELECT
Book
WHERE Book.writer_name LIKE ’Camus%’

The Join occurs, but is 100% transparent to the OQL. It will happen each and every time
those objects are queried so that the attribute writer_name becomes part of the properties
of a book —though it will be read-only.

Inheritance

Now, as this is a modern library, several types of media are available: Audio, Video,
Book. All of them have been declared as Item in the data model.

Let’s list items not being produced by a French company:

SELECT
Item
JOIN Producer ON Item.produced by = Producer.id
WHERE Producer.country != ’'France’

This query will return books as well, because a Book is an Item... that’s due to classes
inheritance: a Book inherits from Item.

OQL Statement

There is currently one single type of statement: SELECT

SELECT
class_reference
[class_joined]
[WHERE expression]

* Note the absence of FROM clause, because OQL is aimed at returning objects,
not values.

© Combodo 2010 2

C ombodo

* class_reference indicates the class of objects that you want to select.

* class_joined indicates a series of classes that you want to join, in order to restrict
the set of selected objects (remember, it makes no sense to mention columns).

* where_condition is an expression, very close to what could be found in an SQL
SELECT statement.

class_reference

class_name [AS class_alias]
* class_name indicates the class of objects that you want to select.
* class_alias indicates an alias that will be used to refer to the given class, in the
expressions found into the WHERE clause.

class _name or class_alias

name | ~name’

Backticks must be used in the following circumstances:
* the name of the class is in conflict with a reserved word (example: JOIN...),
* the name of the class contains undesirable characters.

class_joined
JOIN class_reference
ON class_left.external_key = class_right.id

* class_reference refers either to the class on the left of the join or the right...
depending on the data model and the given external key.

* class_right.id has to be specified though it cannot be something else: it refers to
the object that is pointed to by the other one. Class_right is an alias if any has
been given.

* class_left.external_key indicates which attribute from which class should be
pointing to class_right.id. In most cases, the external key attributes could be
guessed, but the reference has to be specified explicitely anyway.

expression

literal
| function
| attribute
| expression operator expression
| (expression)
* literal is either a string (single or double quotes) or a number (only integers are
supported).

© Combodo 2010 3

C ombodo

* function is one of the verbs listed above, the arguments are a coma separated list
of expressions

* attribute is a reference to an object property as defined in the data model, in the
form class_ref.attribute_code — use of backticks is necessary to solve conflict
with reserverd words or white chars.

* operator is any of binary operators listed below.

* expressions may be enclosed in parenthesis to cope with operators precedence.

Name Description Notes
AND Logical AND Synonym && not available
/ Division operator
= Equal operator
>= Greater than or equal
operator
> Greater than operator
<= Less than or equal operator
< Less than operator
LIKE Simple pattern matching
- Minus operator
I=, <> Not equal operator Synonym <> not available
NOT LIKE Negation of simple pattern
matching
+ Addition operator
* Times operator
- Change the sign of the
argument
OR Logical OR Synonym Il not available
IN Check whether a value is
within a set of values
NOT INT Check whether a value is not
within a set of values
function

verb (expression|[, expression
e vyerb is one the known function listed below

© Combodo 2010

[,expression...]...] ...1)

C ombodo

All of them are actually mapped to their equivalent in SQL. In other words, the same
functions will be used in the resulting SQL queries that will be finally executed.

Therefore, the specification of those functions (number and type of arguments, returned
values) stick to the specification of the underlying database.
Any limitation or side-effect, will be related to the version of the database engine.

The hyperlinks provided hereafter will direct you to the reference documentation of
mySQL 5.0, which is the standard recommended database engine (used for qualification
of the OQL processor).

Notes:
- Names are case-sensitive. They have to be uppercase in our implementation,
though mySQL is less restrictive.
- So far, no synomym has been implemented (we kept one single name for a given
function ; example: OQL implements DAY whereas mySQL implements DAY
and DAYOFMONTH as an alias to the same function)

Function name Description Examples
IF If/else construct IF (a=b, ’'equals’, ’'differs’)
ELT Return string at index ELT (index, ’stringl’,
number "string2’, ’'string3’)
COALESCE Return the first non-NULL
argument
CONCAT Return concatenated string CONCAT (firstname, ' 7,
lastname)
SUBSTR Return the substring as SUBSTR (" abcdef’, 2, 3)
specified
TRIM Remove leading and trailing | TRIM(" Dblah ")
spaces
DATE Extract the date part of a date | PATE ()
or datetime expression
DATE FORMAT | Format date as specified DATE_FORMAT ('2009-10-04
22:23:00', 'SW $M $Y')
CURRENT DATE | Return the current date CURRENT_DATE ()
NOW Return the current date and | NOW ()
time
TIME Extract the time portion of TIME ()
the expression passed
TO DAYS Return the date argument TO_DAYS (72009-05-01")

© Combodo 2010 5

http://dev.mysql.com/doc/refman/5.0/en/date-and-time-functions.html#function_to-days
http://dev.mysql.com/doc/refman/5.0/en/date-and-time-functions.html#function_time
http://dev.mysql.com/doc/refman/5.0/en/date-and-time-functions.html#function_now
http://dev.mysql.com/doc/refman/5.0/en/date-and-time-functions.html#function_current-date
http://dev.mysql.com/doc/refman/5.0/en/date-and-time-functions.html#function_date-format
http://dev.mysql.com/doc/refman/5.0/en/date-and-time-functions.html#function_date
http://dev.mysql.com/doc/refman/5.0/en/string-functions.html#function_trim
http://dev.mysql.com/doc/refman/5.0/en/string-functions.html#function_substr
http://dev.mysql.com/doc/refman/5.0/en/string-functions.html#function_concat
http://dev.mysql.com/doc/refman/5.0/en/comparison-operators.html#function_coalesce
http://dev.mysql.com/doc/refman/5.0/en/string-functions.html#function_elt
http://dev.mysql.com/doc/refman/5.0/en/control-flow-functions.html#function_if

C ombodo

Function name Description Examples
converted to days
FROM DAYS Convert a day number to a FROM_DAYS (12345)
date
YEAR Return the year from the date | YEAR (DATE ())
passed
MONTH Return the month from the MONTH (DATE ())
date passed
DAY Return the day of the month | DAY (DATE ())
(0-31)
DATE ADD Add time values (intervals) DATE_ADD (NOW () INTERVAL 1
to a date value HOUR)
See allowed interval units
below
DATE SUB Substract time values DATE_SUB (NOW () INTERVAL 5
(intervals) from a date value MINUTE)
See allowed interval units
below
ROUND Round the argument ROUND (12.356, 2)
FLOOR Return the largest integer FLOOR (12.356)
value not greater than the
argument
INET ATON Return the numeric value of | INET_ATON("15.15.121.12")
an IP address
INET NTOA Return the IP address from a | INET_NTOA (1231654)
numeric value

The list of time interval units currently supported by the functions DATE_ADD and
DATE_SUB, is a subset of the values allowed in mySQL.

OQL does accept:

Time interval units

YEAR

MONTH

DAY

HOUR

MINUTE

SECOND

© Combodo 2010

http://dev.mysql.com/doc/refman/5.0/en/miscellaneous-functions.html#function_inet-ntoa
http://dev.mysql.com/doc/refman/5.0/en/miscellaneous-functions.html#function_inet-aton
http://dev.mysql.com/doc/refman/5.0/en/mathematical-functions.html#function_floor
http://dev.mysql.com/doc/refman/5.0/en/mathematical-functions.html#function_round
http://dev.mysql.com/doc/refman/5.0/en/date-and-time-functions.html#function_date-sub
http://dev.mysql.com/doc/refman/5.0/en/date-and-time-functions.html#function_date-add
http://dev.mysql.com/doc/refman/5.0/en/date-and-time-functions.html#function_day
http://dev.mysql.com/doc/refman/5.0/en/date-and-time-functions.html#function_month
http://dev.mysql.com/doc/refman/5.0/en/date-and-time-functions.html#function_year
http://dev.mysql.com/doc/refman/5.0/en/date-and-time-functions.html#function_from-days

Combodo

BNF Grammar

select-query ::= SELECT class-reference [class-joined] [WHERE expression]
class-reference ::= name [AS name]
class-joined ::= JOIN class-reference ON name.name = name.id
name ::= string | “string”
expression ::=
scalar
| expression operator expression
| (expression)
scalar ::= number | ‘string’ | “string” | column
operator ::= AND |OR |=1<>1!=1>|>=1<|<=|LIKE | NOT LIKE
column ::= name | name.name

© Combodo 2010

	Object Query Language Reference
	Overview
	A famous example: the library
	Starter
	Join classes together
	Inheritance

	OQL Statement
	class_reference
	class_name or class_alias
	class_joined
	expression
	function

	BNF Grammar

